【www.rezxpetr.cn武汉纯水设备】水资源作为基础性和战略性的资源,对社会的可持续发展具有重要意义,国家对工业用水控制较为严格,所以,火力发电厂作为用
水大户,对电厂内各级废水的综合利用显得尤为重要。本文针对火力发电厂废水梯级利用做一个较为全面的技术比较,寻求减少取用新鲜水的途径,同时降低废水排放量;既减少了水资源的消耗,又减少了废水对环境的污染,对建设生态型环境可提供较大的贡献。
1 火电厂主要废水系统
火电厂主要废水包括(辅机)循环水、排污水,锅炉补给水处理系统根据其不同的工艺流程会产生悬浮性废水、酸碱再生废水及反渗透排浓水,凝结水精处理系统再生废水,生活污水,含煤废水及脱硫废水等,
这些废水根据工艺特点进行分类收集和分质回用,实现梯级利用。武汉工业纯水处理设备通过水的梯级使用和循环利用,提高水的重复利用率,在对各类废水分类
收集和分质回用的基础上,提高废水回收率,少量难以回用的末端废水 进行蒸发结晶处理后进行回用,从而实现全厂废水“零排放”。
2 全厂废水梯级利用设计思路
通过对火电厂各类废水的水质特点进行分析可知,全厂废水主要可分为四大类,即悬浮性废水、高含盐量废水、生活污水及脱硫废水。悬浮性废水主要包括锅炉补给水处理系统过滤系统反洗排水、非经常性的空预器冲洗水、含煤废水、凝结水精处理系统除铁装置反洗废水等;高含盐量废水主要来自于(辅机)循环水排污水、锅炉补给水处理系统反渗透排浓水及离子交换器再生废水、凝结水精处理除盐系统再生废水非经常性锅炉酸洗废水等,生活污水主要是电厂生活用水排污水;悬浮
性废水通过工业废水集中处理系统经除浊处理后回用于循环水系统,高 含盐废水需除硬、脱盐处理回用于循环水系统或调整 pH 值后用于对水
质要求较低的系统,如脱硫系统、渣仓冲洗水、灰场喷洒水等。脱硫 废水的水质与脱硫工艺、烟气成分、灰及吸收剂、脱硫工艺用水的水质 等多种因素有关,与电厂其他废水差别较大,处理难度也较大,且处理
工艺中设备的设计条件和使用的药品也不同,故宜单独处理,且作为末 端处理。
3 脱硫废水处理系统详述
脱硫系统作为末端用水点,其废水排放量直接关系全厂的废水排放水平,脱硫废水的消纳在发电厂一般主要用于灰库搅拌,但是,在干灰有综合利用途径时,脱硫废水无法消纳,或是由于废水梯级利用后,水质逐渐恶化,后续工艺难以利用,或者是废水本身水质较为恶劣,难以梯级利用,致使电厂还存在部分废水需要进一步处理;对于湿冷机组,
因废水排放量大,废水几乎不可能在厂内完全平衡,因而,脱硫废水的处理就显得尤为重要了,那么,脱硫废水系统如何选择,在技术性能满 足的前提下,经济性是系统选择的关键。
目前国内的技术方案主要是预处理 + 预浓缩 + 深度浓缩 + 结晶。 脱硫废水硬度含量高,总硬度有时可达上百毫摩尔每升,需要进行预处理软化,将脱硫废水主要阳离子为钠、镁、钙混合的杂盐体系转化为阳离子以钠离子为主的钠盐体系,钠盐的易溶性可有效防止后续浓缩处理
系统以及结晶设备结垢。脱硫废水预处理一般可采用以下方案:石灰 - 碳酸钠软化 - 沉淀池 - 过滤器处理工艺;石灰 - 碳酸钠软化 - 管式微滤膜处理工艺。上海海禹实业中心新闻动态预浓缩系统目前广泛采用的是膜法,可采用电渗析工艺(ED)、 纳滤 (NF)+ 反渗透工艺、高效反渗透工艺等,使废水进一步浓缩,含盐量达到 50000~60000mg/L。
深度浓缩技术主要有膜法及热法,膜法有电渗析工艺(ED)、正渗透(FO)、碟管式反渗(DTRO)、纳滤 (NF) 等,热法主要有蒸发塘、 烟道雾化蒸发、多效强制循环蒸发系统(MED)、蒸汽机械再压缩蒸发(MVR)、低温常压蒸发技术(NED)等,使废水的盐分浓缩至约 100000~150000mg/L 左右,进入结晶器进行固液分离。
3.1 膜法浓缩技术论述
正渗透处理技术的进水浓度一般大于 5%,进水浓度太低则经济性较差。正渗透处理技术虽然具有一定的优势,但是其仍受制于具有选择
透过性的膜和高渗透压的驱动溶液这两个重要因素,正渗透膜两侧产生的渗透压差是正渗透过程能得以持续进行的驱动力,而汲取液的渗透压是决定这种驱动力大小的关键因素。理想的汲取液应具有高的渗透
压、能方便地与水分离、可以循环利用、无毒、高的稳定性等特点。
汲取液主要有两个类型:无机汲取液和有机汲取液。无机汲取液主要为 NH4HCO3。NH4HCO3在水中具有高的溶解度,可产生较高的渗透压,
获得较高的产水率。将稀释后的汲取液加热到
上述各类膜在零排放系统中均不是独立运行,需要结合水质条件组 合或串联运行。
3.2 热法浓缩技术论述
热法蒸发技术是用加热的方法使溶液中的一部分溶剂汽化,从而提高溶液的浓度,或使溶液浓缩饱和而析出溶质的过程。加热蒸发用于废水处理的目的就是加热废水,使水分大量汽化,将废水浓缩减量或使其
溶质结晶析出,蒸发后的冷凝水回用。蒸发减量技术主要有蒸发塘、烟道雾化蒸发、多效强制循环蒸发系统(MED)、蒸汽机械再压缩蒸发
(MVR)、低温常压蒸发技术(NED)等。
多效蒸发技术是将蒸汽热能进行循环并多次重复用,以减少热能消耗,降低运行成本。在多效蒸发工艺中,为了保证加热蒸气在每
一效的传热推动力,各效的操作压力必须依次降低,由此使得各效的蒸 汽沸点和二次蒸汽压强依次降低。末端废水在多个串联的蒸发器中的加 热蒸气的作用下逐渐蒸发,利用前一效蒸发产生的二次蒸汽,作为后一
效蒸发器热源。由于后一效废水沸点温度和压力比前一效低,效与效之 间的热能再生利用可以重复多次。由于加热蒸汽温度随着效数逐渐降低, 多效蒸发器一般只做到四效,四效后蒸发效果就很差。
虽然多效蒸发把前效产生的二次蒸汽作为后效的加热蒸汽,但第一 效仍然需要不断补充大量新鲜蒸汽。多效蒸发过程需要消耗大量的蒸汽,
蒸发处理 1t 水大约需要消耗 0.5~1.5 t 蒸汽
3.3 膜系统与热法浓缩系统小结
如何选择浓缩系统成为零排放处理的关键,热法由于其静态投资较多而使其应用受到了限制,膜法作为废水的浓缩环节是目前水处理零排放的主要技术路线,经预处理、膜法深度浓缩处理后的浓缩废液含盐量
达 150000 mg/L 后进入后续蒸发结晶系统。
但是,不可回避的问题是,膜法(尤其是反渗透膜)由于其对进水的要求苛刻,不仅需去除结垢性
物质如钙、镁、硅等,还需去除有机物、悬浮物等,因而所需要的预处 理流程长,且加药量较大,会导致运行费用增加,且会增加污泥排放量;另外,膜系统由于其特有的结构,正常使用寿命约为 5 年左右,处理高含盐废水的膜运行寿命可能会更短,使用 3 年左右可能会出现膜元件的无法恢复而更换,那么,在寿命期膜的更换费用也会相当可观。
热法浓缩根据现已有废水零排放的运行成果来看(神华榆林能源化工废水零排 放),浓缩可以达将近30倍,在进水含盐量约为 20000mg/L左右的情况下,浓缩废液含盐量可高 150000mg/L,目前运行效果较好;据有关资料介绍,热法浓缩进水含盐量在高于 50000mg/L时,可直接进蒸发系统,无须进 行预浓缩,蒸发浓缩倍率10倍以上效果较好,而结晶系统的浓缩倍率不宜太大,宜为 2-3 倍。